Газконтроль https://газконтроль.рф

ПИД-РЕГУЛЯТОР ТРЕХИМПУЛЬСНЫЙ РПТ4

Руководство по эксплуатации и паспорт

Газконтроль https://газконтроль.рф

Содержание

Введение	4
1 Назначение	4
2 Технические характеристики	6
3 Устройство и работа прибора	12
3.1 Функциональная схема прибора	12
3.2 Конструкция прибора	17
3.3 Работа прибора	19
3.3.1 Режим "Работа"	19
3.3.2 Режим "Параметры"	23
3.3.3 Режим "Константы ПИД"	28
3.3.4 Режим "Калибровка"	33
3.3.5 Режим "Восстановление"	36
3.3.6 Режим "Настройка RS-485"	36
4 Маркировка и пломбирование	38
5 Упаковка	39
6 Эксплуатационные ограничения	39
7 Меры безопасности	40
8 Подготовка прибора к использованию	41
9 Использование прибора	43
10 Техническое обслуживание	44
11 Хранение	44
12 Транспортирование	44
13 Комплектность	45
14 Гарантии изготовителя	45
15 Свидетельство о приемке и продаже	46

Настоящее руководство по эксплуатации и паспорт предназначено для ознакомления обслуживающего персонала с устройством, принципом действия, конструкцией, технической эксплуатацией и обслуживанием ПИД-регулятора трехимпульсного РПТ4 (далее по тексту "прибор").

1 Назначение

- 1.1 Прибор предназначен для контроля и регулирования уровня воды в барабане котла по ПИД-закону.
 - 1.2 Прибор выполняет следующие функции:
 - измерение уровня воды по токовому сигналу 4-20 мА от датчика уровня;
 - измерение расхода пара от котла по токовому сигналу 4-20 мА от датчика;
- измерение расхода питательной воды котлом по токовому сигналу 4-20 мА от датчика;
- измерение значения положения исполнительного механизма по сигналу от датчика 0-100 Ом;
- регулирование уровня воды по ПИД-закону по сигналу разности между заданным и измеренным значением при условии, что сумма сигнала расхода пара и сигнала расхода продувочной воды неравна сигналу расхода питательной воды;
- отображение на индикаторе текущего значения уровня воды и положения исполнительного механизма (ИМ);
 - изменение задания по параметру "уровень";
 - программирование диапазона измерения параметров по всем входам;
 - обмен данными с персональным компьютером по интерфейсу RS-485;

- контроль и сигнализация отказа датчика, линии связи или измерительного канала;
- программное изменение параметров характеристики преобразования;
- 1.4 Функциональные параметры измерения и контроля задаются обслуживающим персоналом и сохраняются при отключении питания в энергонезависимой памяти прибора.
- 1.5 Прибор предназначен для использования в следующих условиях окружающей среды:

температура воздуха, окружающего корпус прибора	+5+50°C;
атмосферное давление	86107 кПа;
относительная влажность воздуха (при температуре +35°C)	3080%.

2 Технические характеристики

2.1 Основные технические характеристики приведены в таблице 2.1.

Таблица 2.1 - Основные технические характеристики прибора

Наименование характеристики	Значение величины
Номинальное напряжение питания, В	220
Допустимое отклонение напряжения питания, %	-15-+10
Потребляемая мощность, Вт	не более 10
Заданное значение уровня (задание), см	-99,9 - +99,9
Смещение характеристики преобразования, см	от 0 до 99,9
Постоянная времени входного цифрового фильтра, с	от 0,1 до 999,9
Время усреднения, количество периодов измерения	от 0 до 10
Период индикации измеренной величины, с	от 1 до 99
Период опроса датчиков, с	1
Коэффициент усиления регулятора	от 0,01 до 99,99
Постоянная времени интегрирования, с	от 0 до 999,9
Постоянная времени дифференцирования, с	от 0 до 999,9
Гистерезис выходных устройств, см	от 0 до 99,9
Период следования импульсов, с	от 0 до 999,9
Минимальная длительность импульса, с	от 0,0 до 999,9
Скорость динамической балансировки, см/с	от 0 до 99,9
Тип входного датчика вх. 1,2,3,4	по табл. 2.2

Продолжение таблицы 2.1

Наименование характеристики	Значение величины	
Диапазон измерения уровня, см	от - 99,9 до +999,9	
Тип выходного устройства	по таблице 2.3	
Тип индикатора	двухстрочный жидкокри-	
тип индикатора	сталлический	
Режим индикации	по таблице 2.4	
Гистерезис для ПИД-регулятора, см	от 0,1 до 999,9	
Номер прибора в сети	от 1 до 255	
Скорость обмена данными	По таблице 2.5	
Количество бит данных	По таблице 2.6	
Вид паритета	По таблице 2.7	
Количество стоповых битов	По таблице 2.8	
Предел допускаемой основной приведенной по-	±0,5%	
грешности преобразования	±0,5%	
Степень защиты корпуса	IP20	
Габаритные размеры прибора	72х72х90 мм	
Масса прибора	не более 0,5 кг	
Примечание:		
Возможно изготовление по отдельному договору приборов, имен	ощих со стороны передней панели сте-	

пень защиты IP54

Таблица 2.2 – Входные датчики и их параметры

№	Тип	Тип	Предельные индици-	Предельные входного сигналибром	ала при ка-
входа	датчика	шкалы	руемые значения при калибровке	Начальное значение	Конеч- ное зна- чение
1	0-100 Ом	Линейная	0,0 100,0%	0 Ом	100 Ом
2,3,4	4-20 мА	Линейная	0,0100,0% или в установленных технических единицах	4мА	20 мА

Таблица 2.3 – Параметры выходных устройств

Тип	Параметр		
ТИП	Название	Значение	
Оптопара	Максимальный ток на-	100 мА при напряжении 220 В 50 Гц	
симисторная	грузки симистора	220 В 30 ГЦ	
Электромагнитное	Максимальный ток,	8 А при напряжении 220 В 50 Гц	
реле	коммутируемый кон-	и соѕф > 0,4	
Транзисторный	Максимальный ток на-	100 мА при напряжении	
КЛЮЧ	грузки транзистора	40 В постоянного тока	

Тип	Параметр		
ТИП	Название	Значение	
Оптопара	Максимальный ток на-	150 мА при напряжении	
транзисторная	грузки транзистора	80 В постоянного тока	

Таблица 2.4 – Режим индикации

Номер режима	Назначение
00	Уровень воды + положение заслонки.
00	Ручное переключение между параметрами
01	Расход воды + расход пара.
U1	Ручное переключение между параметрами
02	Уровень воды + выход ПИД-регулятора.
02	Ручное переключение между параметрами
	Уровень воды + положение заслонки
03	(Расход воды + расход пара)
	Автоматическое переключение между параметрами.
	Уровень воды + положение заслонки
04	(Уровень воды + выход ПИД-регулятора)
	Автоматическое переключение между параметрами.

Номер режима	Назначение
	Уровень воды + положение заслонки.
05	(Расход воды + расход пара)
05	(Уровень воды + выход ПИД-регулятора)
	Автоматическое переключение между параметрами.
Примечание. По	ервым указан параметр, который выводится на индикатор после подачи напряжения
питания на прибор	

Таблица 2.5 – Скорость обмена данными по интерфейсу RS-485

Условный номер	Скорость обмена данными, бод
01	1200
02	2400
03	4800
04	9600
05	19200
06	38400
07	57600
08	76800
09	115200

Таблица 2.6 – Количество бит данных

Условный номер	Количество бит данных
00	7
01	8

Таблица 2.7 – Вид паритета

Условный номер	Вид паритета
00	Отключен
01	Четность
02	Нечетность

Таблица 2.8 – Количество стоповых битов

Условный номер	Количество стоповых битов
00	1
01	2

3 Устройство и работа прибора

3.1 Функциональная схема прибора

- 3.1.1 Функциональная схема прибора приведена на рисунке 3.1.
- 3.1.2 К прибору подключают датчики, обеспечивающие измерение параметров объекта.

Рисунок 3.1 – Функциональная схема прибора

Сигнал с входных датчиков через инструментальный усилитель подается на АЦП специализированного контроллера. Выходной код АЦП обрабатывается специализиро-

ванным контроллером, который, в частности, по введенной характеристике рассчитывает значения контролируемых параметров с последующим выводом значений на жидкокристаллический индикатор.

3.1.3 Алгоритм регулирования уровня воды в барабане котла

$$D_n \!\!+\! D_{np} \!\!=\! D$$

 D_n - расход пара от котла, т/ч

 D_{np} - расход продувочной воды, м³/ч

D - расход питательной воды, $M^3/4$

Корректирующий импульс с регулятора подаётся на исполнительный механизм, регулирующий подачу питательной воды на котёл. Если уравнение, приведенное выше тождественно и уровень воды средний, то никаких команд на исполнительный механизм с регулятора не подаётся. При снижении уровня воды в барабане котла расход питательной воды должен увеличиваться, при повышении - уменьшаться. Расход питательной воды должен соответствовать расходу пара с учётом продувки.

3.1.4 Регулятор уровня воды в барабане котла

Регулятор, работая в одноимпульсном или в трехимпульсном режиме, должен поддерживать уровень воды в барабане котла в заданных пределах путем воздействия на регулирующий клапан питательного узла.

Входные сигналы (аналоговые):

- основной уровень воды в барабане котла (К14);
- корректирующий расход пара от котла (К11);
- корректирующий расход питательной воды на котел (К61).

Выходные сигналы (дискретные):

- команда на открытие ИМ;
- команда на закрытие ИМ.

Структурная схема регулятора показана на рисунке 3.2.

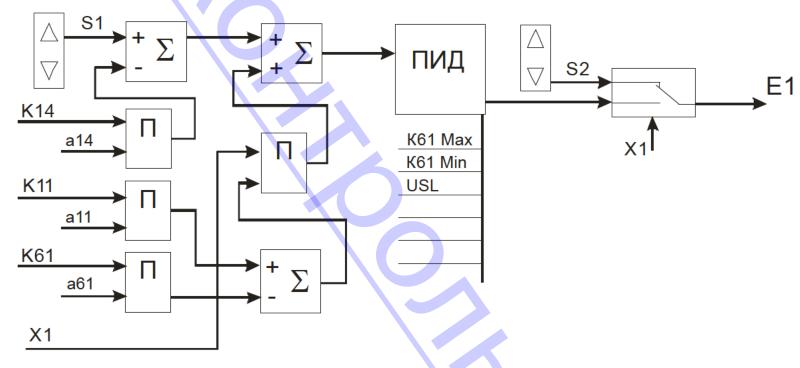


Рисунок 3.2 – Структурная схема регулятора

Для оперативного управления доступны:

• задатчик требуемого параметра (сигнал S1);

• модуль дистанционного/ручного управления ИМ (сигнал S2).

Все остальные параметры считаются внутренними параметрами настройки регулятора и устанавливаются в режиме наладки. Основными из них являются:

- а14: масштабирующий коэффициент при К14;
- а11: масштабирующий коэффициент при К11;
- а61: масштабирующий коэффициент при К61:
- X1 принимающий значения 0 для режима одноимпульсного или 1 для режима трехимпульсного регулятора;
- K61.Max и K61.Min блокировки на превышение/понижение параметра K61 более/менее чем K61.Max/K61.Min;
- абсолютное значение зоны нечувствительности регулятора.

На вход блока ПИД поступает сигнал рассогласования между сигналами задатчика и входных параметров:

$$E = S1 - K14 \cdot a14 + X1 \cdot (K11 \cdot a11 - K61 \cdot a61)$$

Выходной сигнал ПИД-регулятора рассчитывается по соотношению:

$$Y = X_{p} \cdot \left(E_{i} + \phi_{\mathcal{I}} \cdot \frac{\mathcal{I}E}{\mathcal{I}t_{M3M}} + \frac{1}{\phi_{M}} \sum_{n=0}^{n=i} E_{n}\right),$$

где X_p - коэффициент пропорциональности;

Еі - разность между измеренным и установленным значениями;

т_д - постоянная времени дифференцирования;

ΔЕ - разность между двумя соседними разностями Е;

 $\Delta t_{\rm изм}$ - время между двумя соседними измерениями;

ти - постоянная времени интегрирования;

$$\sum_{n=0}^{n=i} E_n$$
 - накопленная сумма отклонений.

Если значение разности по модулю меньше половины зоны нечувствительности Hyst, то значение разности Е считается равной нулю. За пределами этой зоны значение Е рассчитывается по формуле:

$$E = \left| E_p \right| - Hyst$$

где E_p - истинное отклонение.

На своем выходе блок ПИД формирует управляющее воздействие на ИМ с учетом блокировок:

- нижние блокировки срабатывают при уменьшении сигнала рассогласования по абсолютной величине ниже уровня нечувствительности;
- верхние блокировки срабатывают при превышении К61 над К61.Мах, при понижении К6I ниже, чем К61Міп и в случае достижения ИМ конечных положений.

Для безударного перехода из дистанционного режима в автоматический производится обратный пересчет, устанавливающий сигнал рассогласования в ноль с занесением

в задатчик значения равного:

$$Sl=K14 \cdot a14 + (K11 \cdot a11 - K61 \cdot a61) \cdot X1$$

Коэффициенты a14, a11, a61 не должны быть равны нулю. Сигнал Е1 может принимать значение:

- 1 команда на открытие ИМ;
- -1 команда на закрытие ИМ;
- 0 команда на останов ИМ;
- 3.1.5 Специализированный контроллер формирует сигнал "Ошибка" в следующих случаях:
 - обрыв или короткое замыкание датчика;
 - неправильный ввод параметров;
 - ошибка при проведении калибровки прибора.

Наличие ошибки сигнализируется миганием светодиодов "OUT A" и "OUT B" красного цвета.

3.1.6 Жидкокристаллический индикатор предназначен для визуализации режимов работы прибора, а также результатов измерений.

Светодиодные индикаторы обеспечивают удобство работы с прибором. Они сигнализируют об особенностях работы прибора.

3.2 Конструкция прибора

3.2.1. Прибор выполнен в пластмассовом корпусе, предназначенном для щитового крепления.

На лицевой панели прибора, вид которой приведен на рисунке 3.3, расположены двухстрочный жидкокристаллический индикатор, служащий для отображения буквенноцифровой информации и два двухцветных светодиодных индикатора "OUT A" и "OUT B", которые сигнализируют о режимах работы прибора, и три кнопки управления.

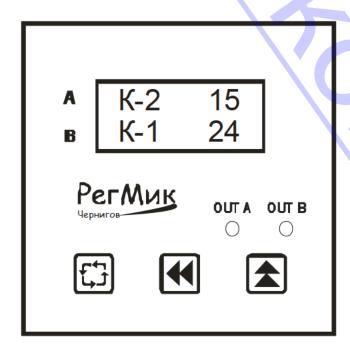


Рисунок 3.3 — Лицевая панель прибора

На задней стенке прибора размещены пять групп клеммников «под винт», предназначенных для подключения датчиков, цепи питания и внешних нагрузок.

- 3.2.2 Жидкокристаллический индикатор предназначен, в основном, для отображения результатов измерений.
- 3.2.3 Светодиоды сигнализируют об особенностях работы прибора:
 - мигающее красное свечение двухцветных светодиодов "OUT A" и "OUT B" сигнализирует о возникновении ошибки;
 - зеленое свечение светодиодов "OUT A" или "OUT B" сигнализирует о формировании выходного сигнала ПИД-регулятора .
 - 3.2.4 Кнопка ("Цикл") предназначена, в основном, для циклического просмотра результатов измерения или установленных параметров.
- 3.2.5 Кнопки ("Вверх") и ("Влево") предназначены для ввода заданных значений регулирования, а также параметров управления.

3.3 Работа прибора

Прибор работает в одном из шести режимов:

- 1 "Работа";
- 2 "Параметры";
- 3 "Константы ПИД";
- 4 "Калибровка";
- 5 "Восстановление";
- 6 "Настройка RS-485".

Примечание – Режимам работы прибора условно присвоены номера от 1 до 6, которые применяются в качестве меток в схемах алгоритмов.

3.3.1 Режим "Работа"

- 3.3.1.1 Режим "Работа" является основным эксплуатационным режимом, в который прибор автоматически входит при включении питания. В данном режиме прибор производит опрос входных датчиков, вычисляет по полученным данным параметры объекта, отображает их на цифровом индикаторе и выдает соответствующий сигнал на выходные устройства.
- 3.3.1.2 В процессе работы прибор непрерывно контролирует наличие ошибок. В случае возникновения ошибок прибор сигнализирует об этом красным мигающим свечением светодиодов "OUT A" и "OUT B". При этом на цифровой индикатор выводится

сообщение в виде Ош: N, где N — номер ошибки, а выходные устройства выключаются. Перечень ошибок, которые автоматически контролируются прибором, приведен в таблице 3.1.

Таблица 3.1 – Ошибки, которые автоматически контролируются прибором

Режим прибора	Сообщение на индикаторе	Причина возникновения ошибки
	Ош: 1	Обрыв датчика
	Ош: 2	Короткое замыкание датчика
	Ош: 3	Измеренное значение меньше нижнего предела
"Работа"		диапазона измерения
1 a001a		Измеренное значение больше верхнего предела
	Ош: 4	диапазона измерения
	Ош: 9	Требуется калибровка прибора или
		восстановление заводских настроек
"Коэффициенты"	Ош: 5	Не правильно введено значение параметра
(GTC		Значения на нижнем и верхнем пределах диапа-
"Калибровка"	Ош: 6	зона измерений совпадают

3.3.1.3 Алгоритм работы прибора в режиме "Работа" показан на рисунке 3.4.

На рисунке 3.4 и последующих рисунках приняты следующие условные обозначения:

пажатие кнопки;

- ★ + -одновременное нажатие кнопок;
- 🖈 , 🖪 -последовательное нажатие кнопок.
- О свечение светодиода отсутствует;
- - красное свечение светодиода;
- мигающее красное свечение светодиода;
- - зеленое свечение светодиода;
- ☀ мигающее зеленое свечение светодиода.
- 3.3.1.4 Изменение показаний (значений) индикатора производят посредством кнопок и и и причем корректируется символ на том знакоместе, сегменты которого мигают.

Нажатие кнопки приводит к циклическому изменению цифр от 0 до 9 на выбранном знакоместе.

Нажатие кнопки • обеспечивает циклический выбор знакомест.

3.3.1.5 В ручном режиме управления исполнительным механизмом нажатие кнопки включает выход 1, а нажатие кнопки включает выход 2. Выход (1 или 2) включен пока соответствующая кнопка удерживается в нажатом состоянии.

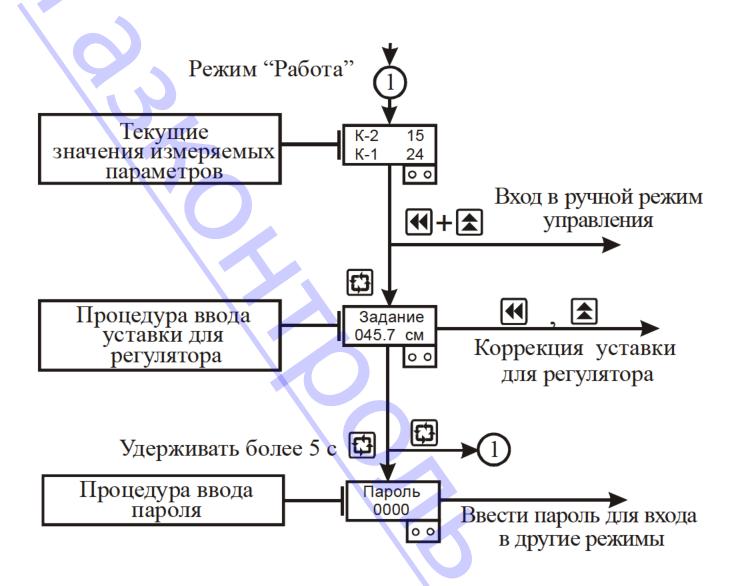


Рисунок 3.4 – Схема алгоритма работы прибора в режиме "Работа"

3.3.2 Режим "Параметры"

- 3.3.2.1 Режим "Параметры" предназначен для задания и записи в энергонезависимую память прибора параметров обработки входной информации, формирования выходного сигнала и индикации результатов измерения. Заданные значения параметров сохраняются в памяти прибора при выключении питания.
- 3.3.2.2 Метрологические характеристики прибора определяются введенными параметрами, поэтому доступ к их изменению возможен только по паролю, который указан в разделе 6 настоящего документа.
- 3.3.2.3 Вход в режим "Параметры" осуществляется из режима "Работа" нажатием и удерживанием кнопки "Цикл" более 5 с до появления на индикаторе сообщения **«Пароль»** и последующим вводом пароля. Алгоритм работы в режиме "Параметры" приведен на рисунках 3.5, 3.6.
- 3.3.2.4 Кнопка "Цикл" позволяет последовательно просмотреть все параметры. Значения параметров изменяют по алгоритму, описанному в п. 3.3.1.4.

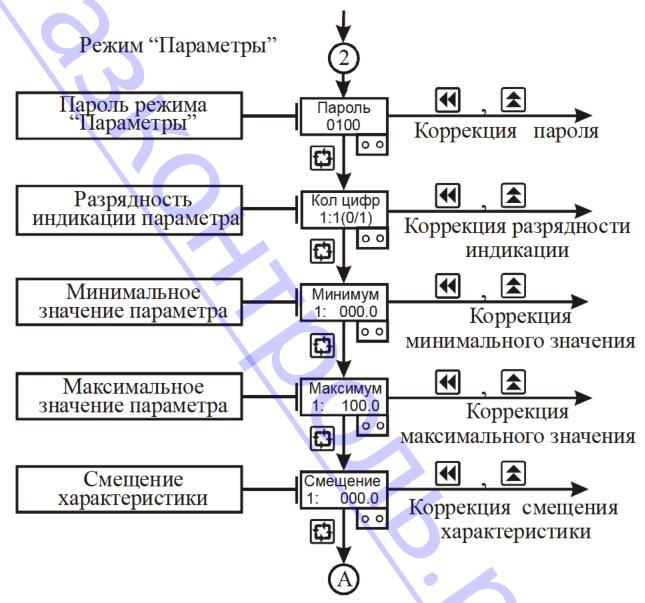


Рисунок 3.5 – Схема алгоритма работы в режиме "Параметры"

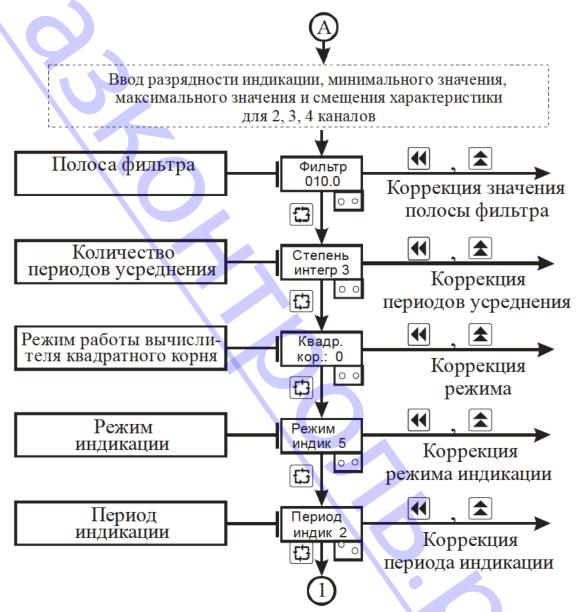


Рисунок 3.6 – Схема алгоритма работы в режиме "Параметры" (продолжение)

3.3.2.5 Параметр "Смещение характеристики" определяет отклонение реальной характеристики преобразования от идеальной. В процессе работы прибора "Смещение характеристики преобразования от идеальной.

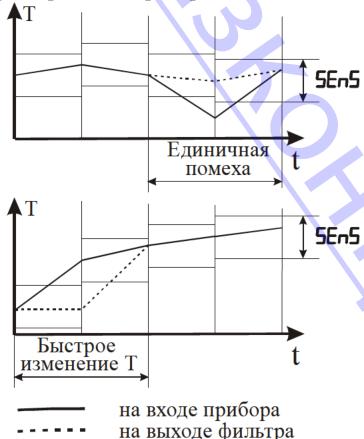
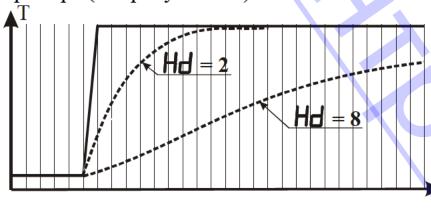


Рисунок 3.7 – Работа фильтра при воздействии случайной помехи и быстром изменении сигнала


рактеристики" прибавляется к измеренному значению параметра.

3.3.2.6 С целью уменьшения влияния случайных импульсных помех на показания в прибор введена цифровая фильтрация. Работа фильтра описывается параметром "Полоса фильтра". Если текущее значение температуры отличается от результатов предыдущего измерения на значение, которое превышает указанное в параметре "Полоса фильтра", то проводится повторное измерение, а на индикаторе остается старое значение (см. рисунок 3.7).

Малое значение параметра "Полоса фильтра" приводит к замедлению реакции прибора на быстрое изменение входной величины. Поэтому при отсутствии помех или при измерении быстроменяющихся параметров рекомендуется задавать ширину полосы как можно больше. Если при работе в условиях сильных помех на индикаторе периодически возникают показания,

сильно отличающиеся от истинного значения, рекомендуется уменьшить полосу фильтра. При этом возможно ухудшение быстродействия прибора из-за повторных измерений.

3.3.2.7 Параметр "Время усреднения" указывают в количестве периодов опроса входного датчика ($N_{onp.}$). Этот параметр позволяет добиться более плавного изменения показаний прибора. Для этого производится вычисление среднего арифметического из последних ($N_{onp.}$) измерений. При значении параметра равном 0 интегратор выключен. Уменьшение значения времени усреднения приводит к более быстрой реакции прибора на скачкообразные изменения измеряемого параметра, но снижает помехозащищенность прибора (см. рисунок 3.8).

Увеличение значения приводит к улучшению помехозащищенности, но вместе с этим повышает инерционность прибора.

3.3.2.8 Параметр "Режим работы вычислителя квадратного корня" (только для токового входа) определяет разрешение работы встроенного вычислителя квадратного корня по табл. 3.2:

$T \subset \mathcal{A}$	3	D				
таопина з	/	Режим	nanothi	вычислителя	квалпатно	го копня
т иолици э.г	_	T CALLETINA	Paccibi		квадратно	1 0 KOPIII

Номер режима	Назначение		
00	Вычислитель квадратного корня отключен		
01	Вычисление квадратного корня по 2 каналу		
02	Вычисление квадратного корня по 3 каналу		
03	Вычисление квадратного корня по 4 каналу		
04	Вычисление квадратного корня по 2 и 3 каналам		
05	Вычисление квадратного корня по 2 и 4 каналам		
06	Вычисление квадратного корня по 3 и 4 каналам		
07	Вычисление квадратного корня по 2, 3 и 4 каналам		

- 3.3.2.9 Параметр "Режим индикации измеренной величины" определяет порядок вывода результатов измерения на цифровой индикатор (см. таблицу 2.4).
- 3.3.2.10 Параметр "Период индикации измеренной величины" указывают в секундах. Он позволяет изменить частоту обновления показаний на индикаторе. Независимо от установленного в этом параметре значения опрос входных датчиков производится с периодом 1 с.

3.3.3 Режим "Константы ПИД"

3.3.3.1 Режим "Константы ПИД" предназначен для задания и записи в энергонезависимую память констант, которые используются при формировании управляющего выходного сигнала по ПИД-закону. Заданные значения параметров сохраняются в памяти прибора при выключении питания.

- 3.3.3.2 Метрологические характеристики прибора определяются введенными константами, поэтому доступ к их изменению возможен только по паролю, который указан в разделе 6 настоящего документа.
- 3.3.3.3 Вход в режим "Константы ПИД" осуществляется из режима "Работа" нажатием и удерживанием кнопки "Цикл" более 5 с до появления на индикаторе сообщения "Пароль" и последующим вводом пароля. Алгоритм работы в режиме "Константы ПИД" приведен на рисунках 3.9 3.11.
- 3.3.3.4 Параметр "Период следования импульсов" определяет для ПИД-регулятора период следования импульсов на выходном устройстве.
- 3.3.3.5 Параметры "Коэффициент пропорциональности", "Постоянная времени интегрирования", "Постоянная времени дифференцирования", "Гистерезис" и "Уровень мощности" являются параметрами закона регулирования температуры объекта (см. пп. 3.1.4).

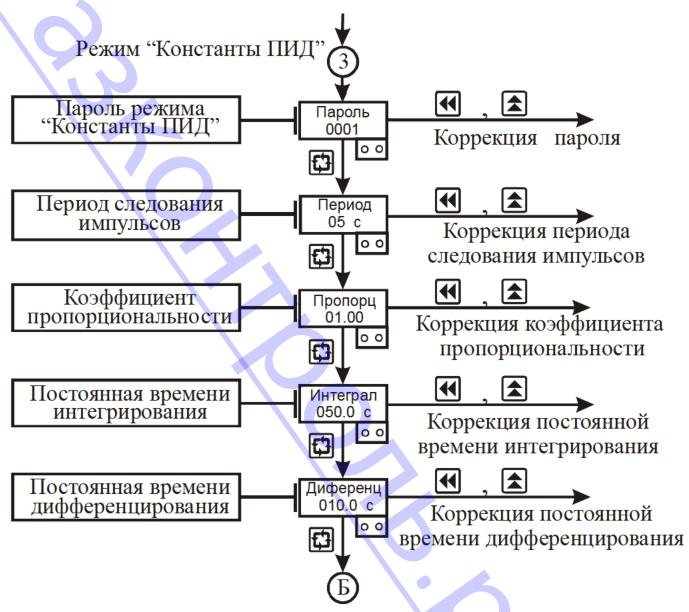


Рисунок 3.9 – Схема алгоритма работы в режиме "Константы ПИД"

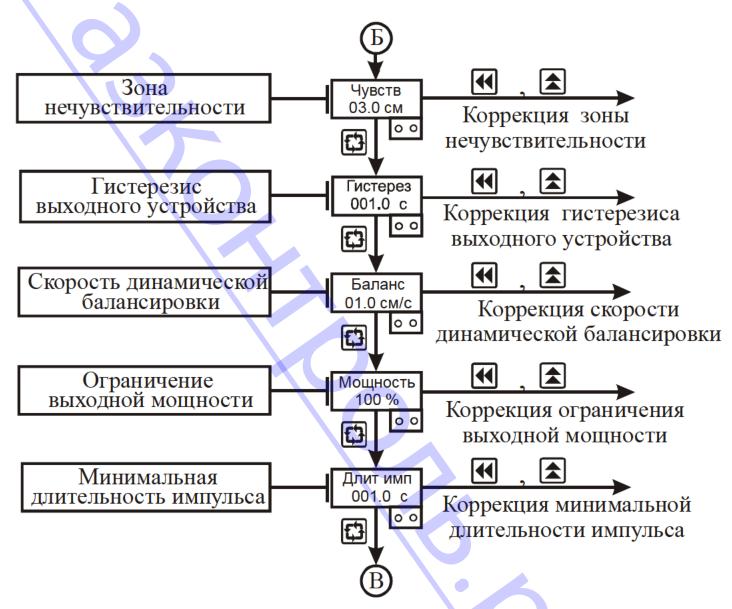


Рисунок 3.10 – Схема алгоритма работы в режиме "Константы ПИД" (продолжение)

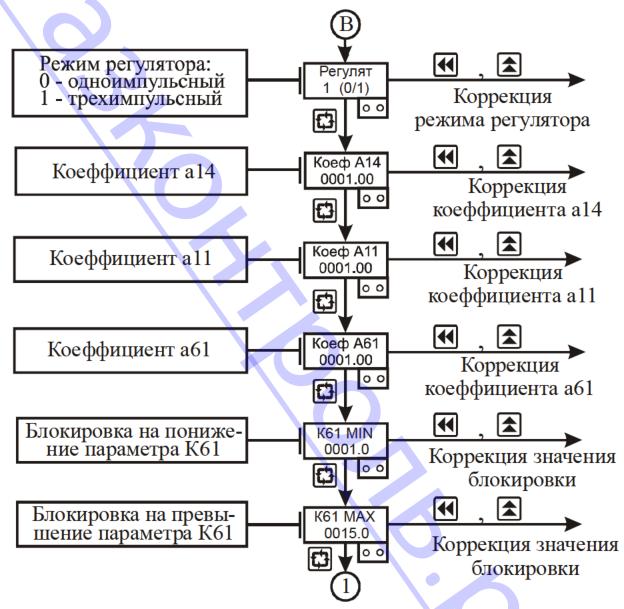


Рисунок 3.11 – Схема алгоритма работы в режиме "Константы ПИД" (окончание)

3.3.4 Режим "Калибровка"

- 3.3.4.1 Режим "Калибровка" предназначен для задания и записи в энергонезависимую память прибора параметров характеристики преобразования сигнала входных датчиков. Заданные значения параметров сохраняются в памяти прибора при выключении питания.
- 3.3.4.2 Метрологические характеристики прибора определяются параметрами характеристики преобразования входных датчиков, поэтому доступ к их изменению возможен только по паролю, который указан в разделе 6 настоящего документа.
- 3.3.4.3 Вход в режим "Калибровка" осуществляется из режима "Работа" нажатием и удерживанием кнопки "Цикл" более 5 с до появления на индикаторе сообщения «Пароль» и последующим вводом пароля. Алгоритм работы в режиме "Калибровка" приведен на рисунке 3.12.

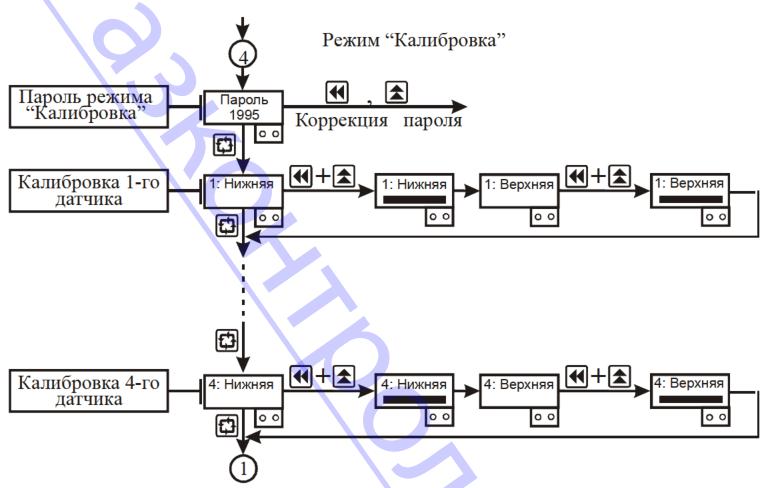


Рисунок 3.12 – Схема алгоритма работы в режиме "Калибровка"

3.3.4.4 В этом режиме следует задать калибровочную информацию для групп входных датчиков (см. таблицу 2.2), которые планируется использовать совместно с прибором.

- 3.3.4.5 Кнопка "Цикл" позволяет последовательно осуществить калибровку всех датчиков на нижнем и верхнем пределах диапазона измерения.
- 3.3.4.6 Калибровку прибора на нижнем и верхнем пределах измерения производят следующим образом:
 - контролируют наличие на индикаторе сообщения **N: Нижняя**, где N номер датчика;
 - подключают к входу прибора имитатор датчика, на котором устанавливают тре- буемые значения параметра по таблице 2.2;
 - нажимают одновременно кнопки "Влево" и "Вверх";
 - контролируют наличие на индикаторе бегущей строки, что свидетельствует о проведении процесса калибровки. В это время недопустимы любые операции с прибором;
 - контролируют наличие на индикаторе сообщения N: Верхняя;
 - подключают к входу прибора имитатор датчика, на котором устанавливают требуемые значения параметра по таблице 2.2;
 - нажимают одновременно кнопки "Влево" и "Вверх";
 - контролируют наличие на индикаторе бегущей строки, что свидетельствует о проведении процесса калибровки.
- 3.3.4.7 Сообщение об ошибке **«Ошибка: 06»** появляется на индикаторе, если измеренное значение имитатора датчика на нижнем и верхнем пределах диапазона измерений совпадают.

3.3.5 Режим "Восстановление"

- 3.3.5.1 Режим "Восстановление" предназначен для автоматического восстановления всех параметров, которые были введены на заводе-изготовителе.
- 3.3.5.2 Восстановление параметров осуществляется из режима "Работа" нажатием и удерживанием кнопки "Цикл" более 5 с до появления на индикаторе сообщения «Пароль» и последующим вводом пароля, указанного в разделе 6 настоящего документа.

3.3.6 Режим "Настройка RS-485"

- 3.3.6.1 Режим "Настройка RS-485" предназначен для задания и записи в энергонезависимую память прибора параметров, определяющих алгоритм обмена данными с персональным компьютером по интерфейсу RS-485. Заданные значения параметров сохраняются в памяти прибора при выключении питания.
- 3.3.6.2 Качество обмена данными с персональным компьютером определяется введенными параметрами, поэтому доступ к их изменению возможен только по паролю, который указан в разделе 6 настоящего документа.
- 3.3.6.3 Вход в режим "Настройка RS-485" осуществляется из режима "Работа" нажатием и удерживанием кнопки "Цикл" более 5 с до появления на индикаторе сообщения «Пароль» и последующим вводом пароля. Алгоритм работы в режиме "Настройка RS-485" приведен на рисунках 3.13 и 3.14.
- 3.3.6.4 Параметр "Номер прибора в сети" предназначен для идентификации прибора в компьютерной сети.
- 3.3.6.5 Скорость передачи данных по интерфейсу RS-485 (см таблицу 2.5) и формат передаваемых данных (см. таблицы 2.6 –2.8) определяют параметры "Скорость обмена

данными", "Количество бит данных", "Вид паритета" и "Количество стоповых битов".

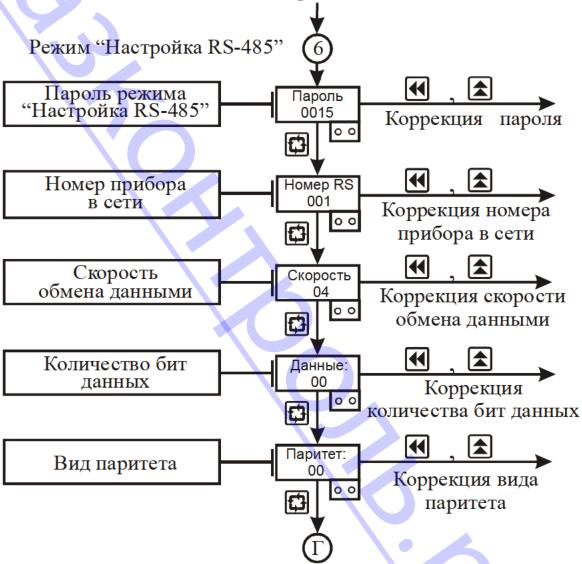


Рисунок 3.13 — Схема алгоритма работы в режиме "Настройка RS-485"

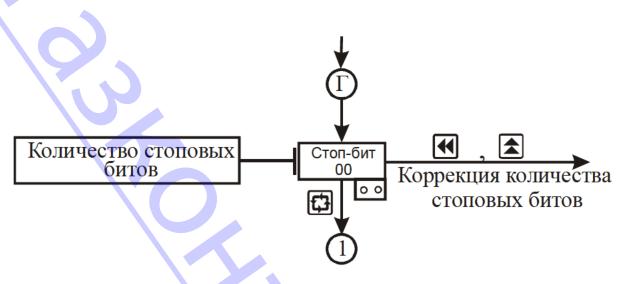


Рисунок 3.14 — Схема алгоритма работы в режиме "Настройка RS-485" (окончание)

4 Маркировка и пломбирование

- 4.1 На лицевой панели прибора нанесены:
- товарный знак предприятия изготовителя;
- условное обозначение типа прибора.
- 4.2 На задней панели прибора нанесены:
- напряжения и частота напряжения питания;
- мощность потребления;
- заводской номер;
- дата изготовления (месяц и год);
- 4.3 Задняя панель прибора опломбирована пломбами предприятия-изготовителя.

5 Упаковка

Упаковка прибора произведена по ГОСТ 9181 -74 в потребительскую тару, выполненную из гофрированного картона.

6 Эксплуатационные ограничения

6.1 Технические характеристики РПТ4, несоблюдение которых недопустимо по условиям безопасности и которые могут привести к выходу его из строя, а также приборы для их контроля приведены в таблице 6.1.

Таблица 6.1 - Технические характеристики и приборы для их контроля

Наименование характеристики	Значение	Приборы контроля
Напряжение питания	220(+22;-33)B	Вольтметр класса точности не ниже 2,5

Примечание - Методы контроля указанных характеристик определяет эксплуатирующая организация в зависимости от конкретных условий применения прибора.

6.2 Технические характеристики прибора определяются параметрами и константами, которые вводят в различных режимах. С целью исключения несанкционированного изменения параметров и констант переход в режимы работы прибора возможен только по паролям, значения которых указаны в таблице 6.2.

Таблица 6.2 – Пароли для перехода в режимы

Режим	Пароль
"Параметры"	0100
"Константы ПИД"	0001
"Калибровка"	1995
"Восстановление"	4307
"Настройка RS-485"	0015

7 Меры безопасности

- 7.1 По способу защиты от поражения электрическим током прибор соответствует классу 0 по ГОСТ 12.2.007.0-75.
- 7.2 При эксплуатации и техническом обслуживании необходимо соблюдать требования настоящего руководства по эксплуатации, ГОСТ 12.3.019-80, «Правил технической эксплуатации электроустановок потребителей» и «Правил безопасной эксплуатации электроустановок потребителей».
- 7.3 В приборе используется опасное для жизни напряжение. При установке прибора на объекте, а также при устранении неисправностей и техническом обслуживании необходимо отключить прибор и подключаемые устройства от сети.
- 7.4 НЕ ДОПУСКАЙТЕ попадания влаги на выходные контакты клеммника и внутренние электроэлементы измерителя. Запрещается использование прибора в агрессивных средах с содержанием в атмосфере кислот, щелочей, масел и т. п.
- 7.5 Подключение, регулировка и техобслуживание прибора должны производиться только квалифицированными специалистами, изучившими настоящее руководство по

эксплуатации.

8 Подготовка прибора к использованию

- 8.1 Установите прибор на штатное место и закрепите его.
- 8.2 Проложите линии связи, предназначенные для соединения прибора с сетью питания, входным датчиками и исполнительными устройствами.
- 8.3 Произведите подключение прибора в соответствии с требованиями, приведенными на рисунке 8.1, а также с учетом расположения клеммников на задней панели прибора. При монтаже внешних связей необходимо обеспечить надежный контакт клеммника прибора с проводниками, для чего рекомендуется тщательно зачистить и облудить их выводы. Сечение жил не должно превышать 1 мм². Подсоединение проводов осуществляется под винт.

ВНИМАНИЕ!

- Во избежание выхода из строя измерительной схемы прибора подсоединение линий связей необходимо производить, начиная с подключения датчиков к линии, а затем линии к клеммнику прибора.
- С целью исключения проникновения промышленных помех в измерительную часть прибора линии его связи с входными датчиками рекомендуется экранировать. В качестве экрана может быть использована заземленная стальная труба. Не допускается прокладка линии связи "датчик-прибор" в одной трубе с силовыми проводами, а также с проводами, создающими высокочастотные или импульсные помехи.
- При коммутации выходным реле прибора цепей с напряжением более ~24В, необходимо установить демпфирующие RC-цепочки параллельно каждой индуктивной нагрузке.

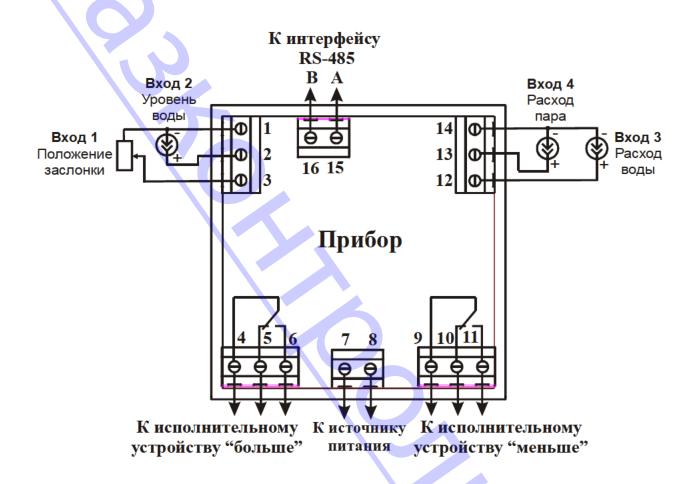


Рисунок 8.1 — Схема подключения входных датчиков, интерфейса связи, источника питания и исполнительных устройств

8.4 После подключения всех необходимых связей подайте на прибор питание. При

исправности датчиков и линий связи на цифровом индикаторе отобразятся результаты измерения. Если после подачи питания на индикаторе появилось сообщение об ошибке или показания прибора не соответствуют реальным значениям измеряемых величин, проверьте исправность датчиков и линий связи, а также правильность их подключения.

ВНИМАНИЕ! При проверке исправности входных датчиков и линий связи необходимо отключать прибор от сети питания. Во избежание выхода прибора из строя при "прозвонке" связей используйте устройства с напряжением питания не превышающим 1,5 В. При более высоких напряжениях отключение линий связи от прибора обязательно.

8.5 Введите в прибор необходимые для выполнения технологического процесса параметры.

9 Использование прибора

- 9.1 Подайте напряжения питания на прибор, после чего проконтролируйте его функционирование в режиме "Работа" по наличию на цифровом индикаторе сообщений о значении измеренных параметров.
- 9.2 В данном режиме прибор производит опрос входных датчиков, вычисляет по полученным данным текущее значение параметров объекта, отображает его на цифровом индикаторе и выдает соответствующий сигнал на выходное устройство.

В процессе работы прибор автоматически контролирует состояние входных датчиков, нахождение измеренных параметров вне установленного диапазона измерений, правильность ввода параметров и проведения калибровки прибора.

9.3 В режиме "Работа" прибор управляет внешними исполнительными устройства-

ми по ПИД-закону. Визуальный контроль за работой выходных устройств осуществляется оператором по светодиодам "OUT A" и "OUT B", которые расположены на передней панели прибора. Зеленое свечение светодиода сигнализирует о переводе выходного устройства в состояние "Включено", а погасание - в состояние "Отключено".

9.4 В режимах "Параметры" и "Константы ПИД" изменяют параметры, которые определяют погрешность измерения и регулирования параметров объекта.

10 Техническое обслуживание

10.1 Техническое обслуживание прибора проводится не реже одного раза в шесть месяцев и состоит в контроле его крепления, контроле электрических соединений, а также в удалении пыли и грязи с клеммников задней панели.

11 Хранение

- 11.1. Прибор следует хранить в закрытых отапливаемых помещениях в картонных коробках при следующих условиях:
 - температура окружающего воздуха от 0 до 60°C.
 - относительная влажность воздуха не более 95% при температуре 35°C.
- 11.2 В воздухе помещения не должно быть пыли, паров кислот и щелочей, а также газов, вызывающих коррозию.

12 Транспортирование

12.1 Прибор в упаковке можно транспортировать при температуре от минус 25 до 55°C и относительной влажности не более 98% при 35°C.

- 12.2 Транспортирование допускается всеми видами закрытого транспорта.
- 12.3 Транспортирование авиатранспортом должно производиться в отапливаемых герметизированных отсеках.

13 Комплектность

Прибор РПТ4 - 1 шт.

Крепежный элемент - 2 шт.

Руководство по эксплуатации и паспорт - 1 экз.

Примечание:

Допускается поставка одного экземпляра "Руководство по эксплуатации и паспорт" на партию приборов, поставляемых в один адрес.

14 Гарантии изготовителя

- 14.1. Изготовитель гарантирует соответствие прибора техническим условиям при соблюдении условий эксплуатации, транспортирования, хранения и монтажа.
 - 14.2 Гарантийный срок эксплуатации 24 месяца со дня продажи.
- 14.3 В случае выхода изделия из строя в течение гарантийного срока при условии соблюдения потребителем правил эксплуатации, транспортирования и хранения предприятие-изготовитель обязуется осуществить его бесплатный ремонт или замену.

15	Свиде	тельст	во о п	риемке и	продаже
-----------	-------	--------	--------	----------	---------

Прибор(ы) РПТ4 заводо	ской(ие) номер(а)
изготовлен(ы) и принят(ы) в	соответствии с обязательными требованиями государствен-
ных стандартов, действующе	ей технической документацией и признан(ы) годным(и) для
эксплуатации.	
Дата выпуска	г. Штамп ОТК
Дата продажи	

Примечания

1 Интерфейс связи RS-485 устанавливается в прибор при указании об этом в договоре на поставку.